Robust Discriminant Analysis Based on Nonparametric Maximum Entropy

نویسندگان

  • Ran He
  • Bao-Gang Hu
  • Xiao-Tong Yuan
چکیده

In this paper, we propose a Robust Discriminant Analysis based on maximum entropy (MaxEnt) criterion (MaxEnt-RDA), which is derived from a nonparametric estimate of Renyi’s quadratic entropy. MaxEnt-RDA uses entropy as both objective and constraints; thus the structural information of classes is preserved while information loss is minimized. It is a natural extension of LDA from Gaussian assumption to any distribution assumption. Like LDA, the optimal solution of MaxEnt-RDA can also be solved by an eigen-decomposition method, where feature extraction is achieved by designing two Parzen probability matrices that characterize the within-class variation and the between-class variation respectively. Furthermore, MaxEnt-RDA makes use of high order statistics (entropy) to estimate the probability matrix so that it is robust to outliers. Experiments on toy problem , UCI datasets and face datasets demonstrate the effectiveness of the proposed method with comparison to other state-of-the-art methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation

The Finite Sample Performance of Semiand Nonparametric Estimators for Treatment Effects and Policy Evaluation This paper investigates the finite sample performance of a comprehensive set of semiand nonparametric estimators for treatment and policy evaluation. In contrast to previous simulation studies which mostly considered semiparametric approaches relying on parametric propensity score estim...

متن کامل

Feature extraction using maximum nonparametric margin projection

Dimensionality reduction is often recommended to handle high dimensional data before performing the tasks of visualization and classification. So far, large families of dimensionality reduction methods besides the supervised or the unsupervised, the linear or the nonlinear, the global or the local have been developed. In this paper, a maximum nonparametric margin projection (MNMP) method is put...

متن کامل

Classification of Alzheimer’s disease from Quadratic Sample Entropy of the EEG

Currently accepted input parameter limitations in entropy based, non-linear signal processing methods, e.g. Sample Entropy (SampEn), may limit the information gathered from tested biological signals. This study investigates the ability of Quadratic Sample Entropy (QSE) to identify changes in electroencephalogram (EEG) signals of 11 patients with a diagnosis of Alzheimer’s Disease (AD) and 11 ag...

متن کامل

Kernel Maximum a Posteriori Classification with Error Bound Analysis

Kernel methods have been widely used in data classification. Many kernel-based classifiers like Kernel Support Vector Machines (KSVM) assume that data can be separated by a hyperplane in the feature space. These methods do not consider the data distribution. This paper proposes a novel Kernel Maximum A Posteriori (KMAP) classification method, which implements a Gaussian density distribution ass...

متن کامل

Kernel-Based Discriminant Techniques for Educational Placement

This article considers the problem of educational placement. Several discriminant techniques are applied to a data set from a survey project of science ability. A profile vector for each student consists of five science-educational indictors. The students are intended to be placed into three reference groups: advanced, regular, and remedial. Various discriminant techniques, including Fisher’s d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009